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Abstract

This paper proposes a cell-phone identification sys-
tem independent of speech content as well as the
speaker. Audio recorded from a cell-phone contains spe-
cific signatures corresponding to that cell-phone. These
unique signatures of the cell-phone implicitly captured
in the recorded audio can be utilized to identify the cell-
phone. These signatures of a cell-phone obtained from
the recorded audio are visually more distinct in the fre-
quency domain than in the time domain signal. Thus,
by utilizing the distinctiveness of the signatures in the
frequency domain and learning capability of the Convo-
lutional Neural Network (CNN), we propose a system'
which learns unique signatures of the cell-phones from
the frequency domain representation of the audio. In
particular, we have used the magnitude of the Discrete
Fourier Transform (DFT) as the frequency representa-
tion of an audio signal. An extensive set of experiments
performed on a large duration dataset shows that the
proposed system outperforms the existing state-of-the-
art systems, notably in the cases where recordings used
for training and testing the systems contain mutually
exclusive audio content as well as speakers.

1. Introduction

Speech is one of the most prominent ways of com-
munication. For the last few decades, speech has been
an important area of research in signal processing do-
main because it conveys not only the speech content it-
self but also various additional information, such as the
language spoken, emotions, and identity of the speaker.
Rapid advances and ease of availability of digital sig-
nal processing techniques in hardware as well as soft-
ware packages have made digital data quite easy to

LCode corresponding to the proposed system is available at
author’s web-page.

acquire, process, store, and transmit. Ability to easily
manipulate and tamper digital data is the flip side of
the continually growing technology. Tampering digi-
tal content imposes a severe threat to the authenticity
and integrity of digital data, be it digital documents,
digital audio, or digital images. In the field of multi-
media forensics, there are various approaches to eval-
uate the authenticity of digital data. Identification of
brand and model of the device used to capture multi-
media, referred to as source identification, is one such
approach and is a crucial step during a forensic inves-
tigation. With the advancements in technology, hand-
held devices like cell-phones and tablets are becoming
an essential part of general human life. Cell-phones
are no longer used as only an instrument for making
and receiving phone calls, but they serve as multipur-
pose hand-held devices fulfilling myriad purposes such
as voice recorder and have replaced many standalone
dedicated devices used for these purposes. This paper
focuses on the forensics of audio recordings by identi-
fying their originating device, cell-phone in this case.
Recognizing the brand and model of a cell-phone can
help in answering some of the forensic questions such
as ownership verification and tampering detection in
the scenarios where different parts of recorded audio
are detected as originating from different cell-phones.
This paper aims to determine the exact brand and
model of the cell-phone from the audio recording re-
gardless of the speaker and speech content, in the close-
set classification scenario. The proposed system for
identifying the source acquisition device (cell-phone)
utilizes intrinsic signatures left on the acquired audio
from the acquisition device. Authors in [3], have estab-
lished that the recording device leaves its own footprint
on the frequency spectrum of the recorded audio and
to capture these device-specific signatures from the fre-
quency spectrum, handcrafted Mel Frequency Cepstral
Coefficient (MFCC) feature vector is utilized. Authors
in [18] have also observed that the frequency response
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curve of the recorded audio has the device-specific sig-
natures and designed a feature vector named as Band
Energy Difference (BED) to capture the same from the
frequency response of the recorded audio signal. Our
proposed system is inspired by the observations made
by the previous two studies ( [8] and [18]), but instead
of using handcrafting on the frequency spectrum of
the audio signal, we have used the magnitude of the
Discrete Fourier Transform (DFT) as a simplistic fre-
quency domain representation of the audio signal and
fed to a Convolutional Neural Network (CNN) to learn
the uniqueness of different cell-phones. Using this ap-
proach, the proposed system addresses one of the most
common and practical scenarios of cell-phone identi-
fication where the speech content and speaker corre-
sponding to a test recording are not present in the data
available for training the system. A similar situation
also arises when the test data contains multiple speak-
ers with some of them absent in the training data, such
as the recording of a telephone conversation or an inter-
view or a meeting. This necessitates the identification
system to be content as well as speaker independent.
The main contributions of this paper are as follows:

1. Design of a novel CNN-based system for captur-
ing the device signature using frequency domain
representation of audio,

2. Generation of a large duration (with respect to the
recording duration) dataset,

3. Better performance in speaker independent sce-
nario, and

4. A new decision fusion approach to combine indi-
vidual decisions on small audio segments to get
the decisions on the given test recording.

The rest of the paper is organized as follows. Sec-
tion 2 presents the relevant existing works in the litera-
ture. In Section 3, detailed description of our proposed
system is given. Section 4 describes the datasets used
for evaluating the performance of the proposed system.
It also briefly describes the state-of-the-art methods
used for comparative analysis. Experimental findings
are reported in the Section 5. Finally, Section 6 con-
cludes the paper.

2. Related Work

The earliest system for classifying microphones from
the recorded audio was proposed by Kraetzer et al. [15].
In this paper, 7 time domain based statistical features
and 56 Mel-cepstral domain features were used for clas-
sifying four microphones and maximum classification
accuracies of 75.99% and 43.57% were achieved using

the Bayesian classifier and K-means clustering, respec-
tively. In [3] authors used the histogram of Fourier
coefficients in the near-silence regions of the recorded
audio. Maximum classification accuracy of 93.5% was
achieved for classifying seven different microphones us-
ing simple logistic regression as the classifier. An al-
ternative approach proposed in [5] used Gaussian Mix-
ture Models (GMM) to perform close set identifica-
tion of eight land-line telephones as well as eight mi-
crophones. Tkram et al. [10] have used polyspectral
analysis for capturing the artifacts induced by the mi-
crophone. In the identification phase, distance and
correlation-based similarity measures have been used.
The results were evaluated on a dataset consisting of
eight microphones. Hanilgi et al. [8] used Mel Fre-
quency Cepstral Coefficients (MFCC) features of the
recorded speech to recognize the brand and model of
the cell-phone from the recorded speech. Support Vec-
tor Machine (SVM) and vector quantization have been
used for classification. Their dataset consisted of 14
cell-phones of different brands and models. In the
classification phase, they found that SVM does bet-
ter than vector quantization and maximum closed set
accuracy of 96.42% was achieved using SVM classi-
fier. Further, Hanil¢i et al. [0], extended their work
by comparing different set of acoustic features for cell-
phone classification. These feature sets were MFCC,
Linear Frequency Cepstral Coefficient (LFCC), Bark
Frequency Cepstral Coefficients (BFCC), and linear
Prediction Cepstral Coefficients (LPCC). The study
concluded that in general, the baseline MFCC does
better than other features considered for comparison
but with the cepstral variance normalization, LPCC
performs slightly better than the MFCC. Addition of
the corresponding delta features further improves the
performance of the systems. In another study, Hanilgi
et al. [7] showed that the features such as MFCC and
LFCC extracted from the non-speech regions of the
whole speech result in higher recognition rate for cell-
phone recognition system. In another work, Pandey
et al. [19], used power spectral density from the speech
free regions of the recordings for source cell-phone clas-
sification. Authors in [1] used only the noisy part of
the whole speech for MFCC feature extraction. In [14]
the MFCC features were extracted from the recorded
audio, and after training a GMM model, Gaussian Su-
pervectors (GSVs) were formed using model parame-
ters such as the mean vector and the main diagonal
of the covariance matrix. Sparse representation based
cell-phone verification problem has been addressed by
Zou et al. [25]. In this work, GSVs based on MFCC
features were used for building and learning different
dictionaries. Deep auto-encoders were used in [17] to
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extract the features and represent the intrinsic traces of
a cell-phone in the speech recordings. To generate the
deep representation based on the bottleneck features, a
GMM model was used. Further, spectral clustering was
used for associating the recordings with the cell-phone.
In [23] a combination of MFCC and Inverted MFCC
(IMFCC) feature vectors was utilized to emphasize the
low-frequency region of the recorded audio signal along
with the emphasis on the high-frequency region. The
most recent system for cell-phone classification is pro-
posed in [18], which characterizes the frequency re-
sponse of a recording device using a feature descrip-
tor named as Band Energy Difference (BED). Authors
have created and tested the performance of their al-
gorithm on a 31 cell-phone dataset in controlled con-
ditions and a 141 cell-phone dataset in uncontrolled-
conditions. Except for the recent system in [18], none
of the existing systems for cell-phone classification have
explicitly focused on addressing the problem in the si-
multaneous constraint of content as well as speaker
independence. Further, the existing systems perform
classification of audio segments of duration 2 seconds
or larger [3,18]. The system proposed in this paper ad-
dresses these limitations of audio forensics systems by
using appropriate input to the CNNs for audio source
classification, which is not used by any of the existing
systems.

3. Proposed System
3.1. Preprocessing

Default sampling frequencies for recording audio
might differ between different cell-phones (Table 1 in
Section 4) and most of the cell-phones allow users to
choose from a set of audio qualities, sampling frequen-
cies and file formats of the recorded audio. Therefore,
the sampling frequency and file format of the audio
recording cannot be used as a conclusive fingerprint to
identify the source cell-phone from the audio record-
ing. Thus, the proposed system is made independent
of the sampling frequency and file format of the original
input file by first applying a preprocessing step, where
audio files are re-sampled at a fixed sampling frequency
(Fs = 8 KHz) and saved in a lossless format (.wav). In
this paper, the performance of the proposed system
is evaluated on different datasets primarily containing
audio recordings of human speech (Refer to Section 4
for further details of datasets). Since the telephone
speech content typically ranges from 300 Hz to 3300 Hz
only and general speech recognition systems use 8 KHz
sampling rate for telephone speech [21]. Therefore, the
pre-processing step utilized in this paper re-samples all
recordings at F; = 8 KHz.

3.2. Input to the Network

This paper proposes to learn the audio sensor fin-
gerprints from the magnitude of DFT of the audio sig-
nal because: 1) sensor fingerprints utilized for forensics
should be independent of speech content and learning
them in frequency domain will be much easier than
the time domain segmentation of spoken words, 2) the
uniqueness of a device fingerprint is visually more dis-
tinctive in the frequency domain than the direct time
domain representation [8], and 3) CNNs have provided
high classification accuracies in many tasks related to
visual discrimination of input data.

Given audio of duration T seconds (having Fy x T
samples), it is divided into smaller non-overlapping seg-
ments of M, samples each. Each of these smaller seg-
ments corresponds to At = My/Fs seconds. So, we

T
have K = {EJ (where |.| denotes the floor function)

number of smaller segments of length At seconds. Let
x € RMo be a smaller segment of length At seconds,
represented in the time domain. An equivalent repre-
sentation of x in the frequency domain can be obtained
by taking M point DFT of x. Both these representa-
tions contain the same information and are recoverable
from each other as long as M > Mj,. Another key
property of the audio source classification system, pro-
posed in this paper, is effectiveness on classifying small
duration of audio recording and extension to forgery
detection. The state-of-the-art audio source classifi-
cation systems provide decisions on audio recordings
of duration 2 seconds [18] or 3 seconds [8]. Thus, we
have designed and tested our closed-set audio source
identification system on audio recordings of duration
T =1 second (with At = 0.5 seconds). We utilize the
magnitude of M (= 8000) point DFT of x. Choice of
M = 8000 is made based on a series of initial exper-
iments performed with different values of M. These
experiments indicated that M = 8000 gives good trade-
off between frequency resolution for audio source classi-
fication and requirement of memory and computational
resources. Since the magnitude of DFT for a real signal
is symmetric, we take only first 4001 (8000/2 + 1) co-
efficients to represent x in the frequency domain. Let
these DFT coefficients corresponding to the audio seg-
ments of At seconds (x) are denoted as the vector |X]|
(|X| € ]R4001). This frequency domain representation
|X], corresponding to each of the K audio segments x,
are fed into the CNN (described later in this Section)
to learn the device-specific signatures. Although some
of the existing works [2, 20,22, 24] in CNN-based sys-
tems for image forensics have utilized the histograms
of the Discrete Cosine Transform (DCT) coefficients as
input to the CNN, but none of the existing works in
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audio forensics have utilized direct frequency domain
representation as input to the CNN.

3.3. Network Architecture

Figure 1 shows the CNN architecture used in the
proposed system for classifying audio segments into NV
classes (where N is number of cell-phones in the closed
set identification problem). Input to the CNN is a
4001 dimensional DFT vector |X|. This CNN has four
1D convolutional layers (Conv-1, Conv-2, Conv-3, and
Conv-4) each having 256 filters of size 3 x 1 followed by
max-pooling layer of size 3 x 1. The output of the last
max-pooling layer is passed through four consecutive
fully connected layers (FC-1, FC-2, FC-3, and FC-4)
with 128, 128, 256 and N neurons, respectively. The
ReLU activation function is used for each convolutional
and first three fully connected layers. The final output
is passed to a softmax function to obtain the N-class
probability distribution. Batch normalization [11] is
performed on the output of each convolutional layer
and fully connected layers before the activation func-
tion. L2 weight regularization with a penalty parame-
ter of 0.01 is used only with the FC-3 layer. Weights
of filters in all these layers are initialized with He [9]
normal initializer and bias is initialized with zero vec-
tor. Adam [13] optimizer is used with parameters (1,
B2 and € set to 0.9, 0.999, and 108, respectively, on
the batches of size 128 with categorical cross-entropy
loss for optimization. CNN is trained for 30 epochs,
and the best model with the lowest validation error in
these thirty epochs is chosen as the final model. The
learning rate is initialized with 0.001 and decayed with
a factor of 10~ after every ten epochs. All of our ex-
periments are performed on an NVIDIA GeForce GTX
1080 GPU with 8 GB memory.

3.4. Decision Fusion

As we have N different cell-phones in our closed
set identification problem, for each of the audio seg-
ments X, softmax function of the CNN, gives N di-
mensional probability vector. Here, each of the N
probability values denote the probability of that par-
ticular segment belonging to a particular class (out
of N classes). We propose to use the following de-
cision fusion scheme for predicting the audio source
class of audio recordings of length 7" seconds. Our ex-
periments show that this decision fusion scheme gives
better performance than the simpler decision fusion
schemes based on maximum probability and majority
voting. For an input audio recording of duration 7" sec-
onds having K consecutive audio segments of At sec-
onds, we have their predicted probabilities Py(n) for
each segment k (kK = 1,2,...,K), and for each class

n (n = 1,2,...,N). A cumulative score ¥(n) for a
particular class n is defined as:

K
Y(n) =Y Pi(n), wheren=1,2,...,N (1)
k=1

Final class n* for the audio recording of duration T’
seconds is obtained as:

n* = arg max (n) (2)
ne{l,2,....N}

4. Experimental Setup

MOBIPHONE dataset [14] is the only publicly ac-
cessible dataset of cell-phone recordings. This dataset
consists of 21 cell-phone models of 7 different brands.
Each cell-phone in this dataset has recordings of 12
male and 12 female speakers. Each speaker in the
dataset has uttered 10 sentences, each sentence of ap-
proximately 3 seconds duration. In which two sen-
tences are the same, and the other eight sentences are
different for each of the speakers. Currently, for every
speaker in the dataset, a single audio file of approx-
imately 10 x 3 = 30 seconds is available, and each of
the 10 sentences is not available separately. Thus, each
cell-phone has approximately 24 x 30 = 720 seconds of
audio recordings. While MOBIPHONE dataset orig-
inally contained 21 cell-phones, the cell-phone named
as ‘Samsung s5830i’ (Table I in [14]) has been removed
for our all experiments on MOBIPHONE dataset due
to the small duration of its recordings (403 seconds).

One of the key properties of the audio source clas-
sification system proposed in this paper is robustness
against the speaker and audio content changes. There-
fore, for evaluating the performance of the systems ad-
dressing this problem, we will need training and testing
datasets to consists of mutually exclusive audio con-
tents and speakers. If MOBIPHONE dataset is to be
used for evaluating speaker and audio content inde-
pendence of systems, (after removing the two common
sentences) maximum possible training size will be 9.2
minutes per class (with 23 speakers for training and
remaining 1 for testing). The state-of-the-art audio
source classification systems do not use CNN and have
typically around 5 minutes [8], and 6 minutes [18] of
training data per class. In contrast to the traditional
feature engineering, CNN-based systems learn the fea-
tures/signatures from the data itself and perform well
when trained with a large amount of data [16]. There-
fore, for training and evaluation of CNN-based system
for speaker and audio content independent audio source
classification, a new dataset of cell-phone recordings
with larger duration for each cell-phone is required. A
dataset consisting of 19 different cell-phones (Table 1)
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Figure 1: Network Architecture

has been prepared. This dataset is unique as com-
pared to the publicly available MOBIPHONE dataset
in terms of the duration of each recording per cell-
phone. Each of the cell-phones in the database has
three audio recordings Si,S2 and S3, each of dura-
tions 30 minutes. The three original audio files are
three webinars 2 * 4 with different content in English
language. The three audio recordings, S1,S2 and Sj
belong to three different speakers, with S; correspond-
ing to a female speaker while other two corresponds to
two different male speakers. Cell-phones in our dataset
were used as direct recording devices to record audio
files being played through a loudspeaker connected to
a Laptop. Audio recordings for each cell-phone were
done at the same location and in a relatively quiet envi-
ronment. Table 1 represents different cell-phones with
their default sampling rates, and default recording for-
mats, used in this dataset. This dataset also consists
of two cell-phone (C1g and Cg) of the same brand and
model. And cell-phone Cy7 is also same as C1g, with
C1g having some additional features.

Based on the initial testing with different values of
duration of audio recordings T" and the number of non-
overlapping segments K (Section 3.2), for our final sys-
tem, their values are empirically chosen as T' = 1 sec-
ond and K = 2. Note that in all the experiments re-
ported in this paper, the trained CNN model gives in-
dependent predictions for each of these K segments of
length At = % = 0.5 seconds and the fusion technique
described in the Section 3.4 is applied to obtain the
decisions on T" = 1 second. Hence, proposed system
makes a final prediction on audio recordings of the du-
ration T' = 1 second, and these independent samples of
T = 1 second are obtained by segmenting each of the
three recordings into non-overlapping segments. Thus,
we will get a total of 3 x30x60 = 5400 samples for each
of the 19 classes and split them into different mutually
exclusive training and testing sets for different exper-
iments. In the rest of the paper, a sample denotes an
independent audio recording of duration 7' = 1 second.

We have evaluated the performance of two state-of-

2
https://in.mathworks.com/videos/managing-and-sharing-matlab-code-98671.html
https://in.mathworks.com/videos/top-10-productivity-tools-in-matlab-95250.html

https://in.mathworks.con/videos/spectral-analysis-with-matlab-95557.html

Table 1: Dataset Details

Default
Class Sam- Default
Sr. Name Brand and Model pling For-
No. Fre- mat
quency
1 Ch HTC Desire 526G+ 48.0 KHz | .3gpp
2 Cy IPHONE 5s 44.1 KHz | .m4a
3 Cs Lenavo PM 8.0 KHz .amr
4 Cy Lenovo Vibe K4 Note | 48.0 KHz | .ogg
5 Cs Moto G 16.0 KHz | .wav
6 Cs Moto G2 16.0 KHz | .wav
7 Cy Nokia 215 8.0 KHz .wav
8 Cy Nokia 311 8.0 KHz .amr
9 Cy Nokia Asha 201 8.0 KHz .amr
10 Cho Nokia Asha 502 8.0 KHz .amr
11 C1 Nokia 225 8.0 KHz .wav
12 | O za;?g‘gggoc}mxy Pop | g0 kHz | amr
13 | Cis ZT:ZSI}%%Z Galaxy | 441 KHy | mda
14 C1a Samsung S5 44.1 KHz | .m4a
15 Cis Micromax P680 48.0 KHz | .aac
16 | Cig Redmi 1s 16.0 KHz | .wav
17 | Ci7 Redmi 3s 44.1 KHz | .mp3
18 Cig Redmi 3s Prime 44.1 KHz | .mp3
19 Chg Redmi 3s Prime 44.1 KHz | .mp3

the-art systems as the base-line: 1) an MFCC-based
system proposed by Hanil¢i et al. [3], and 2) a BED-
based system proposed by Luo et al. [18]. From the
implementation point of view, to calculate MFCC with
the parameters described in [8], implementation avail-
able in [12] is used. Further, the Generalized Linear
Discriminant Sequence (GLDS) order described in []
is set to be 2. For the system in [18], BED feature
vector are calculated by the MATLAB code provided
by the authors. For the classification purpose, both
systems ( [8] and [18]) use LIBSVM implementation of
C-SVM [4] as a classifier with a radial basis function
kernel. The model parameters (C, ) are chosen sep-
arately for each experiment using default grid search
optimization available in LIBSVM on a grid of C' and
v, with C' € [—5,15] and v € [—15,3]. Step size used
for C and ~ are 3 and 2, respectively.
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5. Results and Discussion
5.1. Optimal Training Duration

To find an optimal training duration, we designed an
experiment where a CNN is trained with the samples
obtained from first 5, 10, 15, and 20 minutes of each au-
dio recording, S; (i € {1,2,3}). In all these four cases,
testing is done on mutually exclusive samples obtained
from 10 minutes duration (21 minutes to 30 minutes) of
each S; (i € {1,2,3}). Note that, in the rest of the pa-
per for the result reported on our dataset, testing with
S; (1 € {1,2,3}) denotes, testing the model with the
T = 1 second samples obtained from non-overlapping
segmentation of the same S; with starting time from
21 minutes to end time of 30 minutes. For example,
if all three audio recordings are used for testing, then
the total duration of testing audio will be 30 minutes
and corresponds to ?’()Tﬂ = 1800 samples per class of
duration 7" =1 second.

Figures 2a, 2b, and 2c show the average test classi-
fication accuracies in the cases where training is done
with the samples obtained from different durations of
S1, S2, and S5 respectively. In all three cases, when
training and testing recordings belong to same speak-
ers, accuracies are high even for 5 minutes of train-
ing data, while for other cases increasing the amount
of training data leads to significant improvements in
classification accuracies when training data is increased
from 5 minutes to 15 minutes. Relative gain in classi-
fication accuracies is much smaller when the training
data is increased from 15 minutes to 20 minutes. Thus,
for the rest of the experiments presented in this paper,
the total duration of training data per class is empiri-
cally fixed at 20 minutes, unless otherwise mentioned.

5.2. Effect of Audio Content and Speakers

To analyze the effect of audio content and speakers,
we trained the CNN with an exhaustive combination
of speakers used for training, as depicted in Table 2.
As concluded from Section 5.1, total training duration
is fixed to 20 minutes until specified otherwise. In Ta-
ble 2, rows corresponding to S; refer to training the
CNN using first 20 minutes of that S;. Rows corre-
sponding to the {(S;,5;) |i# 7 ; 4,5 € {1,2,3}}, refer
to training with the samples obtained from the first
10 minutes of S;, and first 10 minutes of S;. The row
corresponding to the (S1, .52, S3), refers to training the
CNN using first 6.7 (= 20/3) minutes from each of the
three S;. Each of the column S; (i € {1,2,3}), denotes
testing with the samples obtained from 10 minutes (21
minutes to 30 minutes) duration of the S;. Thus, in
all the experiments in Table 2, testing data has dif-
ferent content from training data and has the same

or different speaker(s) depending on the row and col-
umn number. Table 2 highlights the accuracies for ex-
periments having the same speakers, with green color.
Table 2 reveals that the average classification accura-
cies for intra-speaker scenarios (green color boxes) are
higher than those for inter-speaker scenarios.

Table 2: Average classification accuracies (%). Rows
correspond to the training audio and columns corre-
spond to the testing audio.

Testin,
Training ° 5 52 S
Sy 99:93 ] 91.08 | 98.34
Sy 97.88 [[99:88°] 96.00
Ss 98.54 | 95.68 [199:21
(51, 52) 99.82 1'99.80 | 93.66
(S2,55) 99.25 [ 99.90 | 99.18
(Ss,51) 99:89 | 97.96 | 99.31
[ (51,5:,8;)  [9978 799:83 199:39

Comparison of the proposed system with systems
in [8], and [18] is shown in Table 3, for the speaker
dependent but content independent scenarios. This set
of experiments say, Fqcp, addresses speaker dependent
scenario where training and testing data come from the
same speaker with different audio content. In Table 3,
each column S; represents training with the samples
from the first 20 minutes of S; and testing with the
samples from the next 10 minutes of the same S;. Both
the proposed system and the BED based system [1§]
perform better than MFCC based system [8], while the
proposed system performs slightly better than the BED
based system [18].

Table 3: Average classification accuracies (%) for ex-
periment Eqep. Each column S; represents training
with the samples obtained from first 20 minutes of .S;
and testing with the next 10 minutes of the same .S;.

Training S Sy S3
Testing S1 So S3

MFCC [8] | 97.40 | 94.35 | 96.36
BED [18] | 99.42 | 99.54 | 98.33
Proposed | 99.93 | 99.88 | 99.21

Table 4 shows the comparison for the speaker as well
as content independent scenarios. This set of experi-
ments, say Eindep, demonstrates the speaker indepen-
dent nature of the proposed system where the audio
content as well as speakers, both are mutually exclu-
sive in training and testing. In the experiments per-
formed in Ejindep, we train the model using samples
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Figure 2: Average classification accuracies for different speakers and training durations.

from first 10 minutes of two audios (two out of Sy, So
and S3) and test with mutually exclusive samples ob-
tained from 10 minutes (21 minutes to 30 minutes) du-
ration of the third audio remaining. For example, the
column corresponding to (S2,.53) in Table 4 shows the
test accuracy for classifying samples obtained from Sy
while the system is trained with samples obtained from
first 10 minutes of Sy and S;. Table 4 clearly shows
that BED based system [18] outperforms MFCC based
system [8], while the proposed system significantly out-
performs both of these systems. The performance gain
provided by the proposed system is much higher for the
speaker independent scenario (Table 4), as compared
to the speaker dependent scenario (Table 3) .

Table 4: Average classification accuracies (%) in the
experiment, Findep. Testing with S; denotes that the
testing has been done on samples obtained from the .S;.

Training (Sg, 53) (Sl, 53) (Sl, S2)
Testing S So S3
MFCC [§] 65.62 64.79 79.26
BED [15] | 91.87 | 89.61 | 95.24
Proposed 99.25 97.96 98.66

Detailed analysis of confusion matrices for each of
these cases reveal that the proposed system not only
gives higher average accuracy, but it has higher accu-
racy for each of the 19 classes, as compared to the BED-
based system [18]. For example, confusion matrices
for the proposed system and BED based system [18],
in the experimental scenario Ej,qcp Where the systems
are trained using 10 minutes audio from each of S;
and S5 and tested one the audio from S3 are shown
in Table 5 and Table 6, respectively. In these tables,
the cells containing “—” correspond to values less than
0.005. One important aspect of this performance gain
is for differentiating between the classes corresponding

to cell-phones of exact same brand and model as in-
dicated by the cluster highlighted in gray in Tables 5
and 6).

5.3. Results on Public Dataset (MOBIPHONE)

Although MOBIPHONE dataset is the only pub-
licly available dataset of cell-phone recordings, it is not
used in [8] and [18], therefore we needed to choose the
recording durations and the training speakers in such
a way that it closely matches with the experiments re-
ported in [3] and [18]. We have performed two kinds
of experiments, similar to Egep and FEinqep described
earlier. In one experiment, similar to Egcp, training
and testing speakers are the same, but the content is
varying. Samples from the first 15 seconds from each
of the 24 speakers are used for training, and remaining
10 seconds from each of the speakers are used for the
testing. In the second experiment, similar to Ejindep,
content, as well as speakers both, are different. Sam-
ples from the first 25 seconds from first eight male and
eight female (Table II in [14]) speakers are used for
the training and initial 25 seconds from the remain-
ing eight speakers are used for testing. Table 7, shows
the average classification accuracies using the proposed
system, and the systems in [3], and [18] on the MOBI-
PHONE dataset. The results on this publicly available
dataset follow the same trend as similar experiments on
our own dataset, BED based system [18] outperforms
MFCC based system [8], while the proposed system sig-
nificantly outperforms both of these systems. Further,
the improvements provided by the proposed system are
even more significant for the inter-speaker scenario.

6. Conclusion and Future Work

We have proposed a learning-based system which
directly uses the frequency domain representation to
extract device specific signatures from recorded au-
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Table 5: Confusion matrix for the proposed system when training is done on the samples obtained from 10 minutes

each of S7 and S5 and testing with the audio of Sj3.

C 1 C: 2 C. 3 04 05 06 C? 08 CF)

Cy | 100.00

Cy -

Cs - - 0.83 -

o |- - - - - -

Cy - - - - - - -

Gy | - - - - - - - -

Cro - - - - - -

Cn - - - - - -

T | - - - - - - -

O] - - - - - - - - -

Cu | - - - - - - -

O | - - - - - - - - -

T |- - - - - - - - -

G| - - - - - - - - -

97.00 | 2.33 | 0.67

O |- - - - - - - - -

0.67 | 99.33 =

Cig - - - - 0.17 - - 0.33 -

0.17 - - - - - - 14.83 | 2.00 | 82.50

Table 6: Confusion matrix for the BED |

| based system when training is done on the samples obtained from 10

minutes each of S; and S; and testing with the audio of Ss.

Cy Cy Cs Cy Cs Cs Cq Cs Cy Cio Cu Crz Ci Cy Cis Cie Cir Cig Cig
Cy 96.83 | 0.50 - 0.17 0.17 - - 1.83 - - - 0.17 - - 0.33 - - - -
Cy - 98.83 - - - - - 0.67 - - - 0.17 - - 0.33 - - - -
Cs - - 97.00 - - - - 2.83 - - - - - - - - - - 0.17
Cy 0.17 0.33 0.33 | 96.50 | 0.33 0.17 - 0.17 - - - - - - 0.50 - - 1.50 -
Cs - - - - 98.50 | 1.17 - - - - - 0.17 - - - - 0.17 - -
Cs - - - - - 99.83 - - - - - - - - - - - - 0.17
Cr - - - - - - 99.83 - - - - - - - 0.17 - - - -
Cs 0.17 0.83 0.17 - 0.33 0.17 - 98.17 - - - - - - 0.17 - - - -
Cy - - - - - - 0.17 4.67 | 92.83 | 1.67 - - 0.50 - 0.17 - - - -
Cio | 0.17 - - - - - - 0.17 2.17 | 97.50 - - - - - - - - -
Cu - - - - - - 0.67 - - - 97.83 - 0.50 - - 1.00 - - -
Ci2 - 0.50 0.17 - 1.17 - - 8.00 - - - 90.00 - - 0.17 - - - -
Ci3 - - - - - - - 1.00 3.83 0.17 - - 94.17 - 0.33 0.50 - - -
Cha - - - - - - - 1.83 0.33 - - - 0.50 | 97.00 - 0.33 - - -
Cis - - - - - - - - - - - - - - 100.00 - - - -
Cie - - - - - - 0.17 0.33 3.00 0.17 - - 2.17 0.17 0.17 93.83 - - -
Chv7 | 0.67 - - - - - - - - - - - - - - - 89.00 | 6.00 4.33
Cis | 0.33 - 0.33 - - 0.67 - - - - - - - - - - 4.33 | 89.83 | 4.50
Ch9 | 0.50 - 0.33 - 0.17 0.83 - 0.67 - 0.17 - - - - - - 6.00 9.33 | 82.00

Table 7: Average classification accuracies (%) in the
experiment Egep, Findep o0 the MOBIPHONE dataset.

MFCC [8] | BED [18] | Proposed
Eaep 90.83 94.79 99.19
FEindep | 85.50 93.70 99.30

dio. The proposed system is capable of identifying the
brand and model of the cell-phones from the small du-
ration of audio recordings. In the practical forensic sce-
nario, where the testing audio often comes from entirely
different speakers, the proposed system outperforms
the current state-of-the-art methods significantly. We
aim to extend the current work to 1) perform forgery
detection using the proposed algorithm, that will need
to have a dataset which contains both authentic and

forged portion of the recordings, and 2) do automatic
cell-phone identification from recordings done over the
communication network. Over the network, cell-phone
recordings pose additional challenge due cellular chan-
nel between speaker and recording device.
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